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VRPTW Problem

@ Vehicle Routing problem (VRP) is a specialization of the
travelling salesman problem, making it NP complete.

- This means there is (currently) no deterministic algorithm
which can solve the problem in a reasonable (polynomial)
amount of time.

@ In VRPTW - VRP with time windows - we must also respect
the opening and closing constraints of the customers we are
servicing.

@ The 2006 VRPTW paper, and this implementation, use a
genetic algorithm in an attempt to find a 'good enough’
solution to the VRPTW problem in a reasonable amount of
time.
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VRPTW Problem with Pareto Ranking

@ In essence, we are modelling evolution using computers to
solve for a favourable solution using math. The advancement
of this paper is the introduction of Pareto ranking.

- Pareto ranking means we treat the problem as a multi-objective
optimization problem instead of a single objective problem.

- A solution is considered to be an improvement over another if
it is as good or better in every objective that is part of the
problem.

- In this case, our objectives are reducing the total distance and
total number of vehicles.
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Chromosome and Route Representation

@ Chromosome are just arrays.

@ Routes store the calculated best (valid) route from the
chromosome, representing one vehicle.

1 struct chromosome {

2 std::array<customerID_t, CUSTOMER_COUNT>
genes{};

3 };

4 struct route {

5 ArrayList<customerID_t> customers;

6 distance_t total_distance = 0;

7 }s
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Individual and Population Representation

@ Chromosomes are stored alongside all valid calculated routes
within structures representing an individual in the population.

@ the population stores only the set of individuals.

1 struct individual {

2 chromosome c;

3 ArrayList<route> routes{};

4 distance_t total_routes_distance = 0;
5 rank_t rank = 0;

6 fitness_t fitness = 0;

7 };

8 struct population {

9 ArraylList<individual> pops;

10 };
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Genetic Algorithm Pseudo-code

1 read_instance_data(path);

2 init_population();

3 for (int i = 0; i < GENERATION_COUNT; i++){
4 reconstruct_populations ();

5

6 calculatePopulationFitness ();

7 rankPopulation () ;

8

9 population p;

10 applyElitism(p, 1);

11 while (p.size() < POPULATION_SIZE)

12 applyTournamentAndOrCrossover (p);
13

14 applyMutation(p);

15

16 rebuild_population_chromosomes (p);

17 current_population = p;

18 }
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Tournament Selection

@ The primary cause of my weird initial results.

tournamentSelect () pseudo-code:

ArrayList<customerID_t> buffer;
fill _with_unique_individuals (buffer);
if (select(0,1) <= 0.8)
return best_in(buffer);
else
return random_from(buffer);

applyTournamentAndOrCrossover pseudo-code:

auto pl = tournamentSelect ();
auto p2 = tournamentSelect () ;
if (select(0,1) <= 0.8)
insert (applyCrossover (pl, p2));
else
insert (pl, p2);
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Best Cost Route Crossover

@ applyCrossover(pl, p2) pseudo-code:

1 auto rl = select_rand_route(pl.routes);
2 auto r2 = select_rand_route(p2.routes, rl);
3 auto cl, c2 = copy_to_children(pl, p2);

4 // step a) remove pl’s route from p2’s (now c2)
s // remove p2’s route from pl’s (mow cl1)

6 remove_from(c2, ril);

7 remove_from(cl, r2);

8 // insert r1 back into c2 at best and feasible
point.

9 insert_to(c2, rl);

10 // insert r2 back into cl at best and feastible
point.

11 insert_to(cl, r2);
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Inserting back into a individual

@ insert_to(child, route) pseudo-code:

1 for (customer in route.customers){

2 ArraylList<route> possibleRoutes;

3 for (child_customer in child.routes.customers){
4 auto r = insert_before_customer (customer, child_customer);
5 if (feasible(r))

6 possibleRoutes. push_back(r);

7

8 // no feasible route found, we must make a new one
9 if (possibleRoutes.empty())

10 return new route(customer);

11 else {

12 route min;

13 min.distance = double::max();

14 for (route in possibleRoutes)

15 if (route.distance < min.distance)

16 min = route;

17 the actual implentation uses route_cache
18 to track the insertion location

19 child . routes.insert_with_place(min);

20 }

21 }
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Weighted Sum vs Pareto Ranking

@ In general, Pareto ranking performed as good to significantly
better than weighted sum fitness.

o After fixing the index issue in tournament selection the R101
results got significantly better with Pareto ranking.

- The results are significantly better than the Solomon best,
which is suspicious...

@ More on this later.
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R101 Pareto Results

Solomon Best: Distance 1637.7, Routes 20
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C101 Pareto Results

Solomon Best: Distance 827.3, Routes 10

C101 Pareto
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R101 Weighted Sum Results

Solomon Best: Distance 1637.7, Routes 20

R101 Weighted Sum (a = 100, § = 0.001)
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C101 Weighted Sum Results

Solomon Best: Distance 827.3, Routes 10

C101 Weighted Sum (a = 100, p = 0.001)
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Addressing the R101 Results

@ Because the c101 set contains values with a start time of 15
and an end time of 67 but service time of 90.00, it creates a
situation where we cannot check the hard constraint of
unloading before closing. All tests performed today are made
by ignoring this issue.

@ "lastDepartTime + record.service_time > record.due”

@ If an exception is made to allow routes in c101 to exist as
single customer routes, the results become non-competitive
with the Solomon best.

o Next slide contains a graph of r101 including the constraint
above.
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R101 Pareto Ranking

Solomon Best: Distance 1637.7, Routes 20

R101 Pareto With Proper Hard Constraint
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