2006 Multi-Objective VRPTW Genetic Algorithm

COSC 4F90

Brett Terpstra

Department of Computer Science
Brock University

October 19, 2023



VRPTW Problem

@ Vehicle Routing problem (VRP) is a specialization of the
travelling salesman problem, making it NP complete.

- This means there is (currently) no deterministic algorithm
which can solve the problem in a reasonable (polynomial)
amount of time.

@ In VRPTW - VRP with time windows - we must also respect
the opening and closing constraints of the customers we are
servicing.

@ The 2006 VRPTW paper, and this implementation, use a
genetic algorithm in an attempt to find a 'good enough’
solution to the VRPTW problem in a reasonable amount of
time.

Brett Terpstra 2006 Multi-Objective VRPTW Genetic Algorithm



VRPTW Problem with Pareto Ranking

@ In essence, we are modelling evolution using computers to
solve for a favourable solution using math. The advancement
of this paper is the introduction of Pareto ranking.

- Pareto ranking means we treat the problem as a multi-objective
optimization problem instead of a single objective problem.

- A solution is considered to be an improvement over another if
it is as good or better in every objective that is part of the
problem.

- In this case, our objectives are reducing the total distance and
total number of vehicles.

Brett Terpstra 2006 Multi-Objective VRPTW Genetic Algorithm



Chromosome and Route Representation

@ Chromosome are just arrays.

@ Routes store the calculated best (valid) route from the
chromosome, representing one vehicle.

1 struct chromosome {

2 std::array<customerID_t, CUSTOMER_COUNT>
genes{};

3 };

4 struct route {

5 ArrayList<customerID_t> customers;

6 distance_t total_distance = 0;

7 }s

Brett Terpstra 2006 Multi-Objective VRPTW Genetic Algorithm



Individual and Population Representation

@ Chromosomes are stored alongside all valid calculated routes
within structures representing an individual in the population.

@ the population stores only the set of individuals.

1 struct individual {

2 chromosome c;

3 ArrayList<route> routes{};

4 distance_t total_routes_distance = 0;
5 rank_t rank = 0;

6 fitness_t fitness = 0;

7 };

8 struct population {

9 ArraylList<individual> pops;

10 };

Brett Terpstra 2006 Multi-Objective VRPTW Genetic Algorithm



Genetic Algorithm Pseudo-code

1 read_instance_data(path);

2 init_population();

3 for (int i = 0; i < GENERATION_COUNT; i++){
4 reconstruct_populations ();

5

6 calculatePopulationFitness ();

7 rankPopulation () ;

8

9 population p;

10 applyElitism(p, 1);

11 while (p.size() < POPULATION_SIZE)

12 applyTournamentAndOrCrossover (p);
13

14 applyMutation(p);

15

16 rebuild_population_chromosomes (p);

17 current_population = p;

18 }

Brett Terpstra 2006 Multi-Objective VRPTW Genetic Algorithm



Tournament Selection

@ The primary cause of my weird initial results.

tournamentSelect () pseudo-code:

ArrayList<customerID_t> buffer;
fill _with_unique_individuals (buffer);
if (select(0,1) <= 0.8)
return best_in(buffer);
else
return random_from(buffer);

applyTournamentAndOrCrossover pseudo-code:

auto pl = tournamentSelect ();
auto p2 = tournamentSelect () ;
if (select(0,1) <= 0.8)
insert (applyCrossover (pl, p2));
else
insert (pl, p2);

Brett Terpstra 2006 Multi-Objective VRPTW Genetic Algorithm



Best Cost Route Crossover

@ applyCrossover(pl, p2) pseudo-code:

1 auto rl = select_rand_route(pl.routes);
2 auto r2 = select_rand_route(p2.routes, rl);
3 auto cl, c2 = copy_to_children(pl, p2);

4 // step a) remove pl’s route from p2’s (now c2)
s // remove p2’s route from pl’s (mow cl1)

6 remove_from(c2, ril);

7 remove_from(cl, r2);

8 // insert r1 back into c2 at best and feasible
point.

9 insert_to(c2, rl);

10 // insert r2 back into cl at best and feastible
point.

11 insert_to(cl, r2);

Brett Terpstra 2006 Multi-Objective VRPTW Genetic Algorithm



Inserting back into a individual

@ insert_to(child, route) pseudo-code:

1 for (customer in route.customers){

2 ArraylList<route> possibleRoutes;

3 for (child_customer in child.routes.customers){
4 auto r = insert_before_customer (customer, child_customer);
5 if (feasible(r))

6 possibleRoutes. push_back(r);

7

8 // no feasible route found, we must make a new one
9 if (possibleRoutes.empty())

10 return new route(customer);

11 else {

12 route min;

13 min.distance = double::max();

14 for (route in possibleRoutes)

15 if (route.distance < min.distance)

16 min = route;

17 the actual implentation uses route_cache
18 to track the insertion location

19 child . routes.insert_with_place(min);

20 }

21 }

Brett Terpstra 2006 Multi-Objective VRPTW Genetic Algorithm



Weighted Sum vs Pareto Ranking

@ In general, Pareto ranking performed as good to significantly
better than weighted sum fitness.

o After fixing the index issue in tournament selection the R101
results got significantly better with Pareto ranking.

- The results are significantly better than the Solomon best,
which is suspicious...

@ More on this later.

Brett Terpstra 2006 Multi-Objective VRPTW Genetic Algorithm



R101 Pareto Results

Solomon Best: Distance 1637.7, Routes 20

R101 Pareto
Distance (Min: 1527.36) and Routes (Min: 9) per Generation
= Distance = Routes
a000 50
40
3000
30
8
£ 2000 g
g E]
] H
Q ©
20
1000
i 10
o []
100 200 300 400 500
Generation

Brett Terpstra 2006 Multi-Objective VRPTW Genetic Algorithm



C101 Pareto Results

Solomon Best: Distance 827.3, Routes 10

C101 Pareto
Distance (Min: 858.308) and Routes (Min: 10) per Generation
— Distance = Routes
4000 50
40
3000
30
s
H g
5 2000 1
] 3
a 2
20
1000
10
o
100 200 300 400 500
Generation

Brett Terpstra 2006 Multi-Objective VRPTW Genetic Algorithm



R101 Weighted Sum Results

Solomon Best: Distance 1637.7, Routes 20

R101 Weighted Sum (a = 100, § = 0.001)
Distance (Min: 1621.37) and Routes (Min: 9) per Generation
— Distance = Routss
4000 50
0
3000
30
E 2000 é
z H
n
1000
10
o o
100 200 300 400 500
Generation

Brett Terpstra 2006 Multi-Objective VRPTW Genetic Algorithm



C101 Weighted Sum Results

Solomon Best: Distance 827.3, Routes 10

C101 Weighted Sum (a = 100, p = 0.001)

Distance (Min: 1337.37) and Routes (Min: 10) per Generation

= Distance = Routes

5000

4000

3000

Distance
Routes

1000

o
100 200 300 400 500

Generation

Brett Terpstra 2006 Multi-Objective VRPTW Genetic Algorithm



Addressing the R101 Results

@ Because the c101 set contains values with a start time of 15
and an end time of 67 but service time of 90.00, it creates a
situation where we cannot check the hard constraint of
unloading before closing. All tests performed today are made
by ignoring this issue.

@ "lastDepartTime + record.service_time > record.due”

@ If an exception is made to allow routes in c101 to exist as
single customer routes, the results become non-competitive
with the Solomon best.

o Next slide contains a graph of r101 including the constraint
above.

Brett Terpstra 2006 Multi-Objective VRPTW Genetic Algorithm



R101 Pareto Ranking

Solomon Best: Distance 1637.7, Routes 20

R101 Pareto With Proper Hard Constraint
Distance (Min: 1764.86) and Routes (Min: 15) per Generation
== Distance == Routes
4000 60
3000
40
8 0
S 2000 £
2 g
20
1000
0 0
100 200 300 400 500
Generation

Brett Terpstra 2006 Multi-Objective VRPTW Genetic Algorithm



References

- Ombuki, Beatrice & Ross, Brian & Hanshar, Franklin. (2006).
Multi-Objective Genetic Algorithms for Vehicle Routing
Problem with Time Windows. Applied Intelligence. 24. 17-30.
10.1007/s10489-006-6926-z.

Brett Terpstra 2006 Multi-Objective VRPTW Genetic Algorithm



